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materials is reviewed with emphasis on phenomenological failur_

criteria. These criteria are primarily intended to give a

good estimation of the safety margin with respect to failure

for arbitrary multiaxial stress states. The failure criteria
do not indicate the types of fracture that will occur in the
material. The collection of failure criteria is evaluated for

applicability for t_e glass reinforced plastics used in mine

detectors. Material tests necessary to determine the parameters
in the failure criteria are discussed.
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NOMENCLATURE /ii

Fi, Fij

X C

X t

YC

Yt

ZC

Zt

_I, _2, _3

_12, _23, _13

_4, _5, _6

Q,Q' ,R,R',S, S'

second and fourth order strength tensors

(tensor polynomial strength criterion, Tsai

and Mu)

compression strength in the direction of the

fibers (warp)

tension strength in the direction of the

fibers (warp)

compression strength in the plane perpendicular

to the direction of the fiber (woof)

tension strength in the plane perpendicular to

the direction of the fiber (woof)

compression strength in the direction perpendi-

cular to the plane

tension strength in the direction perpendicular

to the plane

normal stress in the direction of the fibers (I)

in the plane perpendicular to the direction of

the fibers (2) perpendicular to the plane

( _, _y, az)

slip stresses in planes 1-2, 2-3, 1-3 respect-

ively (Txy, Tyz, TXZ)

slip stress in planes 2-3, 1-3 and 1-2 respect-

ively (Tsai, Mu)

repulsion strength corresponding to _4, _5, _6

IV



I. INTRODUCTION

In the literature, different approaches have been found to

study failure phenomena in composite materials. The two most

important approaches may be found in [2].

If__

I.I Micromechanical approach

In this approach, the starting point is the study of the fail-

ure behavior of the components involved (matrix material fiber and

finally the layers or lamellae).

The failure behavior of the different layers is subsequently

combined into the failure behavior of the complete laminate.

The description of the failure in a composite material is a

fairly complex task in which complete computer programs must be

used to calculate the strength tension relation. To increase the

practical applicability of such an approach, sometimes a simplified

approach is used in which only two points on the stress-tension

curve are calculated. These are the points at which the first fail-

ure occurs in the composite material (comparable to the fluid ten-

sion in a metal) and the final failure stress. The last point is

determined by a so-called "netting theory" in which it is assumed

that the fibers can only absorb normal stresses. Even in this sim-

plified case, it is hardly possible to apply such failure analyses

for practical engineering purposes. In practical engineering, it

is always necessary to obtain, on the basis of simple relationships

between mechanical parameters, an impression of the safety of a

structure with regard to failure.

The inapplicability of the theory applies even more strongly

to the approaches often found in the literature in which failure

mechanics and static considerations are used. Especially for glass

fibers (as used in mine detectors) a static approach for the brittle

i
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failure behavior is inadmissible (because of the brittle failure

behavior).

In [I], we find an overall survey of the study in the area of

the micromecbanical approach. The same publication also indicates

that the usefulness of the mlcromecbanical approach resides mainly

in the possibility of choosing between different compositions of

the composite materials.

Since for mine detectors the material must be considered basic-

ally firm, here actually this study loses much of its usefulness.

The benefit of the micromechanical study must, within the

framework of the study of the composite materiai for mine detectors

be sought in tbe possibilities of achieving by means of these theor-

ies an estimate of the reliability of certain types of experiments.

In the micromecbanical approach, the experiments are carried

out in such a manner that only one form of failure occurs. In the

macromechanical approach to be considered further on, much less

attention is paid to this.

To make sure that a certain failure criterion gives conserva-

tive results in all cases, however, it is certainly recommended to

conduct experiments also for one failure form so that there is a

clear definition of the moment of appearance of the "failure"

1.2 Macromechanical approach

In the macromechanical approach, the primary purpose is to

achieve a fairly simple criterion presenting the failure of the

total laminate as a function of the load state. The number of cri-

teria formulated in the course of time is very large. Reviews of

such criteria may be found in [7,8,9].

2



A great drawback of most of the criteria (at least for the

purpose of the study of mine detectors) is that one proceeds a

priori from the hypothesis that the composite material is used in

an optimal manner. This optimal use must be referred mainly to the
stress state. Most failure hypotheses start from the assumption

that the material returns to a plane stress state, and in this sense

the failure hypotheses hardly differ from those formulated for the

layers (lamellae).

The best known failure criteria in this area are:

a.
Maximum stress theory (Stowel!_ Liu [19]_ Jenkins [23]

Here an arbitrary stress is decomposed into components along

the different principal axes of the material.

Failure occurs when one of the stress components becomes higher

than the failure limit corresponding to this direction.

In this connection, no difference is drawn between failures in

tension or in compression, although the procedure itself suggests

this. A problem arising in the maxlmum stress theory is also the

fact that in the reglon in which transition takes place from one

failure criterion (for example, tension strength in the direction

of the fiber) to another failure criterion (for intance, slip) the

strength is over-estimated (see Figures'l, 2 and 3).

/3A_

b. Maximum tension theory

It is quite similar to the maximum stress theory in which now

the tension In the different directions is considered the decisive

factor. The theory which was proposed in 1966 by General Dynamics,

Fort Worth Division [21], is nothing more than the application of

the St. Venant maximum tension theory.



C • Deformation energy
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The overwhelming majority of phemomenological failure cri-

teria for composite materials are derived from deformation energy

considerations and in particular the form changing energy.

The basis for this was obtained by Von Mises (1900) for iso-

tropic materials with the formula

(I)
(,,× _.y)2 + (,Ty-_.z)2 + (,_z-_x)2-: 6(TxY 2 ÷_Y z2 +Tzx2)= 2,7_ _

Although Von Mises had intended the criterion primarily for

the flow of material, in the course of time for metals, it is only

used to describe the flow.

In the area of composite materials, nevertheless, the applica-

tion of deformation energy criteria is still maintained to describe

the failure. As long as the materials considered are brittle, this

is a reasonable starting point. & number of new criteria have been

derived from the Von Mises criterion. Strictly speaking, most of

the criteria do not give a real deformation energy, but rather a

relation in stress variants. For convenience, these criteria are

also called deformation energy because they are mostly an extension

of the Von Mises formulation.

z

Hill [6] extended subsequently the Von Mises criterion to ani-

sotroplc materials in the form:

F(,,y-.z) 2 + G(,,_-,,x) 2 + 1!(,,x-,,7)2 4 2L_2yz-t 2rl_zx + 2;4]xy = !

in which F, G, H, L, M and N are material parameters.

/4

In this equation (2), it is also assumed implicitly that:

--the material is orthotropic

--there is no difference between tension and compression

strength; with the relation Xt = X C = X; Yt _ YC = Y' it was

then simple to derive:



I 1 1

2F-= +
2G--! + i _ i

Z 2 _ 2 T 2 _ _ _ : RI _

(3)
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The six parameters of the failure criterion are thus deter-

mined entirely by the three tension strengths and the three slip

strengths for the mutually perpendicular directions of the mater-

ial.

To make it possible to compare with the following failure

criteria, it is convenient to write the Hill theory in the follow-

ing form:

Fij,,i,,j = I i = 1,2 ....6 (4)

The repetition of the sub-indices is reduced to the summation

convention in which the sum is measured over all the values of the

sub-indices (I to 6 inclusively).

The term Fij can then be considered as a 6x6 matrix of the

form:

Fij:

-I(! I -'._..t(1_ 1
_2 2 X2 + -2y 1-2)7 2 Z2 + -2X - 1-2)Y 0 0 0

• 1 I
I -I(L _-2 --7.)
-_2 2 y Z X

1 0
-2
Z

1

0 0 O

0 0

1

1

12

(5)

5
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The greatest drawback of the Hill criterion is that it is

impossible to differentiate between tension and compression

strength, while it was just established for composite materials

that there can be a great difference between the two values.

/5

One of the first attempts to include also the compression

forces of the material in the failure criterion was made by Marin

[i0]. The latter used, to this end, the Hill criterion written in

the main tensions (indicated for convenience here as ox I _yl
i

, , CZ

To eliminate the differences in tension and compression, be

modified the relation into:

(.x I _ a)2 _ OWl _ b)? + (,, I _c)? +

mI(,,x: a) (,;y: -b) +(,,y: - h) (,,z

(,,z ] - c) (,;_1 . a) I ='x2v

1 - c) + (7)

The difference from the previous Hill relation is actually only

that three terms have been added, specifically, _x 1, eyl and oz 1

If the failure criterion is considered as a surface in the

six-dimensional stress space, the addition of linear terms in the

failure criterion implies that the origin of the rupture stress

surface is shifted.

If we attempt to relate such a failure criterion (with shifted

origin) with mechanical phenomena, this means that it is assumed

that an internal stress is the cause of the difference in tension

and compression force.

From the more micromechanically directed failure investiga-

tions, it is known [i] that the difference in the two strengths is

mostly caused by a difference in the failure mechanism (in com-

pression, it is not the material stress/strength which is decisive,

but the danger of cracking the fiber).

6
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The above illustrates the earlier remark that no attempt was

made to describe or explain the failure mechanisms with the fail-

ure criteria.

A great drawback of the Marin theory is the fact that the

failure criterion is given in terms of main stresses. Such a

direction of the maln stress does not have to coincide with the

maln directions (symmetry planes) of the material, see Grescszuk

[2]. The problem is that then the tension/compression strengths

must be known in other directions than the main directions of the

material, to be able to determine the parameters of the failure cri-

terion. Practically, this then raises many problems which the Marin

/6_

theory had hardly touched.

The overwhelming majority of later authors recognized the prob-

lem in the Marln theory and have, therefore, deviated from the more

general formulation of the Hill criterion [5].

Some of these theories are discussed below.

Tsai and Azzi proposed a simplification of the Hill criterion

by assuming that the composite material is normally used in an opti-

mal manner and is, therefore, in a flat stres_ state.

Assuming _3 = TI3 = T23 = 0 (5) is converted into

! _I_ I I I I _2 !n = (8)
y2 _ T__ - (_2 +7_- T2)"1"_ +-- + • 12_ 1

A second hypothesis which Is often put forward for composite

materials is that a cross-section perpendicular to the fiber direct-

ion should behave isotropically, 1.e., Y = Z.

It is apparent from the comparison that most pass through the

Tsal-Azzl criterion.

o 12 ,fl,7 2 ,'2 2 T.122

_2 x_- +T +_
= I

(9)

7
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For the glass fabric composite materials considered here,

this last designation cannot apply directly since the hypothesis

of isotropism in the cross-section is not maintained.

The more general notation (8) should basically be defensible

still were it not that bending any slip may practically also occur

perpendicularly.

A method proposed by Tsai and Azzl _[J] to solve this problem

consists in applying the criterion (9/8) by layer (lamella).

But it is very doubtful whether this approach can be imple-

mented for practical purposes. It would specifically be necessary

to establish the stress state per layer.

This might be done for composite materials with exact composi-

tion (winding techniques)(apart from the fact that it would involve

an enormous amount of work). For composites with more arbitrary

structure, this approach would hardly be reasonable. The reason

why the application of the Tsai-Azzi criterion is not reasonable

for the glass fabric considered here is the fact that it is not at

all clear wbether the failure in a layer is determined by a flat

stress state. Specifically, the glass fibers in such a layer are

not straight so that the third stress component may also have an

effect.

/7

The last drawback of the Tsai-Azzi criterion is the same as

for the Hill criterion and concerns the fact that no differentia-

tion is made between tension and compression strength.

For the sake of completeness, another simplification of the

Tsai-Azzi criterion is indicated.

Indeed, in many investigations, it was found that the inter-

action term from (9) _I_2 may be eliminated in many cases so that
2

X
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the Tsai-Azzi criterion is converted into the Norris-Puck

criterion in the form

• o2 T12 _
'_I_ '_ ---- = 1 (i0)
--2 "---f + T2

X ¥

This aspect will be discussed in greater detail further on.

A failure criterion which can avoid most of the above-men-

tioned drawbacks was established by Hoffman [II].

Hoffman also started from the original Hill criterion (2) and

added to this relation a number of linear stress terms to be able

to eliminate the difference between tension and compression:

cl (,,2 - -3) 2 _ c2 (-3 -,,I '_ _ c?, (.I -,,2)2

+ C4" ] * C5,,2 + C(,_3 _ C7,,232 ' C_,'132 _- C9',]2'- : I

(!i)

Such a failure criterion has thus nine material parameters

and therefore a large number of tests are needed to establish these

material parameters.

/8

With the results of

--three tension tests Xt, Yt, Zt

--three compression tests Xc, Yc, Zc and

--three slip tests Q, R, S the following relationships may

be established:



ci II
. 2 YtYc ZtZc XtXc

c2=ll I+ 1 l 1
ZtZc XtXc Y_Yc

2 XtXc YtYc ZtZc

' 1
C4-

Xt Xc

ORIGINAL PAGE IS
OF POOR QUALITy

cs - i i (12)
Yt Yc

C6 = i - l

Zt Zc

The failure criterion is established completely with these

nine parameters/tests.

This criterion has a number of remarkable aspects: the fact

that no difference is made between positive and negative slip

strength. This possibility is left open in many of the criteria

discussed below. It is also doubtful whether this extension is

proper for the orthotropism considered here.

/9

It may also be noted that the equation (12) is a quadratic

equation so that the failure surface in the stress space is ellip-

tical and convex (with origin not necessarily at zero).

With the definition of the Hoffman criterion practically, the

maximum is retained of the original Hill criterion. But actually

I0
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of the Hoffman criterion it should be stated that this criterion

has no physical basis but is rather a mathematical approximation.

Many researchers have observed subsequently that a problem whicb

arises with all the criteria considered here consists in the fact

that the failure criteria are defined with regard to the princi-

pal axes of the material.

This implies that, in the calculation of an actual structure,

the arbitrary stress state must be converted to the stress compo-

nents in the main directions of the material.

It may also be established now that the problem is not so im-

portant for the orthotropic glass fabric reinforced composites con-

sidered here. If in this connection we refer to final element cal-

culations, it happens in most cases that the main direction of the

material coincides with the main direction of the elements.

This can also be a problem for other anisotropic materials.

For the sake of completeness, we will also discuss below the approx-

imations in which the conversion of the stress aces is resolved with

respect to the tensorial algebra.

For the purpose of comparison with other failure criteria, con-

sequently the Hoffman criterion is also written again the matrix

form which like equation (4) can also be written as

ii .,] • Fij,,i,,j ,_ I
(13)

with i = i, 2...6. _-:_._i =. I,:' ...._

Here we have
] 1

xt xc

] 1

Yt Yc

I i

it Zc

0

o

O

(14)

Ii

/i0
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Fij =

XL>Ic 2 XtY,c YtYc ZtZc

, 0 0
XtXc YtYc " "

I -! I I__+ I,. 11 0 0 = 0YtYc 2 (tYc Z_c XcXt

1

ZtZc 0 0 0

1

Q2

1

R2

1

S2

d. Tensor pol_nomlals /ii

The following failure criteria are purposely no longer cal-

culated to the deformation energy approximation.

Although a number of the theories can be reduced to deforma-

tion energy in the definition of the failure criteria, the start-

ing point is a purely mathematical description of the failure cri-

terion. The Hoffman criterion can be considered as a transition

area (no tensors are used there yet).

One of the first theories in this area was formulated by

Goldenblat and Kopnov [5] with tbe relation:

12
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(Fi,,i'' 4 /Fii,_i,,j_';• , , , + (FijL....,j,,_))= l

(15)

in which once again the Summation convention is adopted with

regard to the subindices:

Here it was also assumed:

Fi = strength tensor of the second order

Fij = strength tensor of the fourth order

Fijk = strength tensor of the sixth order

The conversions of the tensor in the rotations of the axes

are known here from tensorial algebra. The great advantage of ten-

sor polynomials is also the fact that the criterion is defined with

respect to an arbitrary system. Goldenb!at and Kopnov have consi-

dered in particular a special case of equation (15) with

,,= 1, :_= _, }= -

so that equation (15) is converted into:

(16)
Fi,_i,\rij,,i-j = I

Tsal and Wu (4) have indicated that the square root in formula (16)

is very impractical, since the result is a + sign. The Goldenblat

and Kopnov criterion is, therefore, best applied in the quadratic

form: 2

F1,,i + iij,,i,,J (Fi,_i) _1 (17)

But even this form of the Goldenblat and Kopnov criterion is not

much used practically. A problem which arises for this criterion

refers to the definition of the interaction term Fij.

If these terms are determined directly with experiments, it

may occur that the failure surface in the stress space is no longer

closed (elliptical) but is converted into a parabolic or hyperbolic /12

surface which may lead to unrealistic tbeoretlcal strength proper-

ties.

This phenomenon was also indicated by Ashkenazi [20]. The

above-mentioned problem becomes even greater if the third power

term (FiJkiajak) is included.

1B
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Apart from the fact that in that case a very large number of

interaction terms have to be determined, such a cubic equation may

often lead to a nonclosed failure surface in the stress space.

To solve the above-mentioned problem Tsai and Wu [4] estab-

lished a criterion which is more general than the Goldenblat-Kopnov

criterion, simpler to apply and results in a closed (elliptical)

failure surface in the stress space.

The Tsai-Wu criterion has the form:

rioi + Fi_i,'j = ] (i = ] ...... 6),
(18)

Here, too, the summation convention is applied with regard to

the sub-indices. To take into account the fact that the failure

surface is elliptical (in the stress state), the following stability

requirements are imposed:

(19)Fii Fjj - Fij 2 .t" 0

In this connection, the striking detail Is that the original

authors also accepted the equality signs in equation (19), while

the later investigators established, on the basis of a more graphic

interpretation of the failure surface (14), that the equality sign

was not acceptable either.

It should be noted that the general equation (16) contains alto-

gether (basically) 42 ° of freedom (unknowns). This number of

unknowns may be reduced to a considerable extent by assuming that

the Fij terms are symmetrical. Such an assumption may be made if

we start from the hypothesis that there is a so-called F(_i) failure

potential. Here the terms Fij are defined by:

(20)
Fij =;2f/,:,,i;',,j =;2r/_--.i;,,i = Fji

The assumption of a failure potential implies nothing other

than the assumption that the failure phenomenon is independent of

the load path. Such a hypothesis is made essentially for all the

14
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above-mentioned failure criteria. How far tbls assumption Is

Justified depends both on the type of material and the pbenomenon

described as failure criterion. If the failure criterion is used /13

to describe a kind of fluid limit (or the first point at which a

break occurs anywhere In the laminate), this assumption is generally

valid.

If this criterion is used to describe the final total failure

of the material, the assumption with regard to the independence of

the load path is less valid. In such a case, specifically tbe final

failure is preceded by plastic deformations which are to some extent

path-dependent. Nevertheless, the failure criterion may still be

valid for the so-called radial stress paths. In this connection,

radial stress paths should be considered as paths in the stress

space in which the corresponding ratio of the stress components

would remain the same.

Since the failure criteria formulated in this report must be

considered primarily as a design criterion and not so much a criter-

ion in wblch very exact predictions must be made on the failure

stresses occurring, such path-dependent effects may be left out of

consideration preliminarily. The simplification taken then is that

the path-dependent effects are lnc!uded _n the safety factors.

With the assumption of formula (20), the number of unknown

parameters was reduced from 42 to 27 (6 for Fi and 21 for Fij). A

still greater reduction in the number of degrees of freedom may be

achieved by starting from ortbogonal material properties which is

directly permissible here for the material considered.

With such an lsotropism, it may be stated directly that a con-

nection between the normal and slip stresses may not arise so that

terms such as FI6 may be equal to zero. It may also be stated that

if the reference system of axes coincides with the material (strength)

main directions, we have [7]: F4 = F5 + F6 = 0.

15
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In the matrix form, the relation (18) is then written as

follows:

Fi --

F1

F2

F3

0

0

0

; Fij --

FII FI2 FI3

F22 F22

F'33

0 0 0

0 0 0

0 0 0

F44 0 0

F55 n

F66

(21)

/l_A

The parameters in equation (21) must be obtained again from

tension and compression tests. "Simple" single axis failure tests

may be used for the terms of Fi and for the diagonal terms in FiJ.

As an illustration: When loading in direction I, the following values

are found for tension and compression strength respectively _=_

ol = Xt and ol = -Xc (let on the minus sign).

For equation (18/21), we may write

Xt 2 FIi + Xt Fi : i and

2
Xc FII - Xc Fi = I

from which it follows that:

I i I
Fi = Xt Xc and FII - XtXc

(22a)

By a similar method, we may obtain for the other material

directions

F2 = l 1 F22 - l
Yt Yc YtYc

F3 - 1 l F33 - I
Zt Zc ZtZc

] F55 I IF44 = --_ "- F66 -
Q_ R2 S_

(22b)

16



Here it may be assumed directly that for the orthotropic

material tbere is no difference between the so-called positive

and negative slip.

A comparison of relations (22) with those from the Hoffman

criterion (14) shows that the characteristics discussed up to now

are exactly the same.

The great difference between the Hoffman criterion and the

Tsai-Wu (tensor polynomial) criterion lie in the definition of the

cross-terms FI2, FI3 and F23.

For the Hoffman criterion, the cross-terms are dependent para-

meters which are established completely if the parameters in equa-

tion (22) are determined.

In the Tsai-Wu criterion, the cross-terms are independent mat-

erial parameters which have also to be determined by separate exper-

iments.

The authors of the criterion (Tsai and Wu) consider that the

advantage of this independence in the cross-terms resides mainly in

the greater flexibility of the criterion to achieve a proper pre-

diction for the failure strength for multiaxlal stress states also.

In this connection, Tsai and Wu [7] state that most failure criteria

describe well the uniaxlal failure strengths, but raise problems in

the multiaxial stress state. The similarity of the form of the

Hoffman and Tsai-Wu criteria wltb regard to tbe uniaxlal failure

strength seems to confirm this view. But even the more flexible

formulation of the Tsai-Wu criterion leads rather to a shift of the

problem than to its solution. Specifically the problem which now

has to be solved for the Tsai-Wu criterion is the question as to

which experiment is most suitable for determining the cross-terms.

The historical developments in this connection are sufficiently

illustrative.
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The Russian investigators used primarily tension and com-

pression tests on a so-called 45 ° blank (the material axes form

an angle of 45 ° with regard to the main axes of the blank).

If for plane 1-2 the experimental results are indicated as

Ut and Uc, we find for FI2

Uc' 2 Xt Xc

(23)or

l ( ) (2- 1 uA. A._ !_+ 1 1 ut2 I ,---
_I]2 : [jt2 I 2 >:t Xc Yt Yc - _ XtXc YtYc

In [12], Tsai and Wu also indicated that these experiments

were hardly sensitive for a variation in FI2 (see Figure 4). In

this publication, the authors also say that much better results

may be expected for a positive sllp test on the 45 ° blank. For an

experimentally determined value V, FI2 is defined by:

!

-i I - v_ i i i +!) _ v2(_+ I ) IFI2 (24)
2V7 Xt Yc Yt Yc XtXc YtYc I

But the practical results seem to be very disappointing, even

for such an experiment.

/16

In [14], Collins and Crane explained with a purely graphic

interpretation of the Tsai-Wu criterion that the positive slip exper-

iments on 45 ° blanks probably do not provide the desired results.

This type of slip experiment is indeed hardly used any longer.

An additional problem in the experimental determination of the

cross-terms depends on the fact that the stability criterion (19)

has always to be satisfied. Thus, it can happen very often that

the experimentally determined value cannot be applied to the cross-

terms.

This is illustrated by the results of Pipes and Cole [13] when

the cross-terms FI2 are determined with off-axis experiments (exper-

iments in which the material forms an angle with the main axis of the

blank).

18



Of the four experimentally determined values of FI2, only one

value seems to satisfy tbe stability criteria. On the basis of

these results, the conclusion may, therefore, be drawn immediately

that it is impossible to determine the cross-terms with these

experiments.

In later publications, especially by Wu [7 and 17] alternative

procedures are proposed to determine the values of the cross-terms.

In these procedures we start from a really biaxlal!y stressed blank

(stress _I, a2). In Wu's procedure, there must be an optimal bi-

ax!ality ratio B B = GI/_2) determined for which the value FI2 can

be defined.

Unfortunately, the optimal value of B depends on the value of

FI2, so that an iteration process must be used (with tbe correspond-

ing number of tests).

In the same publications, it is also indicated that a decision

may be taken to include terms of the higher order (Fijk, Fijkl, /17

etc.) in the failure criterion. This decision depends on the (ex-

permentally determined) value of Fij with regard to the precision

of the solution (determined on the basis of the hypothesis that

the spread in experimental failure experiments is, for instance,

approximately 10%). If the value of Fij is greater than the preci-

sion of the solution, it will be necessary to include additional

higher terms. This is not related to the fact that the situation

becomes even more complicated when these terms of higher order must

be included. Even for these terms of higher order, optimal multi-

axial experiments must be defined with the necessary interaction

work concerned. Moreover, the terms of higher order (Fijk) still

depend on the lower order terms Fij. According to Wu, the Fij terms

can be determined first, after which the determination of the Fijk

terms no longer affects the values of Fij.

The practical calculations in [15] also show that the values

of Fij must be adjusted to a great extent after the determination

19



of Fijk. Tennyson, McDonald and Nanyare used in [15] an actual

hybrid computation technique to be able to describe properly the

interaction between the different cross-terms. For the purpose of

the intended design (for a material not considered here), such an

effort is totally unwarranted. Therefore, it may be stated immed-

iately that terms such as FiJk must not be included in the failure

criterion. This becomes even more apparent if we recall that the

use of terms such as Fijk implies immediately that the failure sur-

face in the stress space is no longer convex with all the related

problems. To sum up, it may be stated that the use of a (Tsai-Wu)

tensor polynomial approximation does give greater flexibility but

that this is achieved to a great extent in the form of more complex

experiments. In the experimental determination of cross-terms such

as FI2, one should also consider thoroughly the benefit achieved in
the sense of a more exact description of failure under a multiaxial

stress state, as compared with the much more complicated experiments.
The next chapter will discuss this in greater detail.

So CHOICE OF A FAILURE CRITERION

/18

In the last chapter, a large number of failure criteria were

described. For the sake of clarity nevertheless, the number of fail-

ure criteria discussed in this report is limited to the most import-

ant. The literature contains countless variants of these failure

criteria.

Radenkovic and Boschat [8] have, for instance, converted the

Tresca criterion by defining the slip strength as a function depend-

ing on the direction.

Griffith and Baldwin [8,24] have attempted to reformulate the

deformation energy criterion for general orthotropid materials by

the main stress axes coinciding with the main axes of the material.

Regarding most of the variants of tbe failure criteria, it may be

stated that only a more complex mathematical formulation is used
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without achieving a gain in flexibility. The overwbelmlng major-

ity of these criteria are hardly used except for very special com-

posite materials.

But there are still two exceptions to this rule:

--Franklin [8] proposed extending the Hoffman criterion by

multiplying the cross terms FI2, F23, FI3 in the FiJ matrix by an

extra parameter (_, _, 7). (Also see Appendix A). This parameter
must then again be determined with a multiaxial test and the basic

philosophy is then essentially the same as for the Tsai-Wu criter-

ion.

Shu and Rosen [18] have followed to determined the slip

strengths an approach which is actually no longer part of the macro-

mechanical but rather the micromechanlcal approach. In this

approach, we use a limit load analysis as known from the theory of

plasticity. By defining subsequently a kinematically permissible

displacement field, an upper and lower limit are found, respectively,

for the failure load.

L =

The more consistent with reality are the displacement and

stress fields, the smaller the differences between the lower and

upper limits.

In [18], the above-lndlcated theory is applied to a unidirect-

ional material. For the slip strength in plane 1-2 (_12), it is

apparent that the lower and upper limits can differ at maximum by

27% (see Figure 5) which seems to be a very reasonable approxima-

tion in view of the measurement precision of failure tests. The

same theory seems to furnish less good solutions for the slip

strength in plane 2-3 (see Figure 6) and the applicability of the

theory to this case must be considered rather doubtful.

/1_99
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How far the results for TI2 are applicable for a glass fabric

is not yet quite clear. It should be possible to use basically

the same stress and displacement fields, so that the possibility

of determining ome of the failure strengths (S) directly from the

properties of the component sections (glass fiber content, fluid

limit of the matrix material) should remain open. It would seem

interesting to test this in the future for a practical case.

In choosing a failure criterion, it must be realized that it

is impossible to establish a failure criterion which applies to all

composite materials.

This phenomenon is actually known also in the "composite

world", and the Tsai-Wu criterion (in which the failure criterion

is the measure) is, for example, a direct consequence of this.

This choice of the failure criterion must then be associated

directly with the type of composite material. A number of general

requirements can, ln each case,be associated directly with the fail-

ure criterion:

i. The criterion must be invariant with respect to the coor-

dinate transformation,

2. it should be flexible enough to be able to describe the

experimental results,

3. the criterion must provide a solution for a certain load

path,

tbe criterion must be mathematically operational.

This means that the criterion must have a simple conversion

between stress space and tension space.

The criterion must also be applicable to strength analyses and

in particular to the method of finite elements.

With these general requirements, a number of marginal notes

may be made with regard to the glass fabric reinforced material con-

sidered here.
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For I: For the orthotropic material considered here and

with regard to the app!ication of the criterion to the finite

element methods, the requirement that the criterion should be

invariant cannot be so important.

/2_£o

For 2: The requirement of sufficient _flexibility for the

failure criterion must be related mainly to the question of whether

the criterion must be able to describe differences in tension and

compression properties. Since no compression tests have yet been

carried out on the present material, no definite answer may be given

to this question, but the results in Tables I and 2 for comparable

materials indicate that the differences in tension and compression

properties are fairly significant. It is, therefore, stated also

that the failure criteria to be chosen should also be able to des-

cribe differences in tension and compression: The failure criteria

described in the previous paragraph should now be tested for the

remaining requirements 2, 3 and 4.

2.1 Maximum stress theory and maximum ten'sion theory

Apart from the problem already indicated that the maximumstress

theory gives an overestimate of the strength properties, both cri-

teria raise very great problems with regard to the conversion of

stress to tension space and inversely (requirement no. 4).

If, for instance, a maximum tension theory is converted to the

stress theory, wrong results may occur as shown in Figure 7 (with

arrows). The same thing may haDpen if a maximum stress theory is

converted to the tension space (Figure 8).

Such phenomena are only to be attributed to the partly linear

nature of the failure criterion.

This effect can already occur for flat stress states.

On the whole, the multiaxial stress states are even more complex. I[
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Both criteria can be practically much more complicated than

apparent at a first glance and additional stability requirements

must be imposed on the criterion.

For a flat stress state, altogether six stability criteria

are needed for the maximum tension theory in the form [7] /21

s!6_ xt_ sii., x_c_2 s:°_× ',<c6 s_ .. ×_;
S12 xt] S]2 ×t] S!2 ×t? S]? Xc2 (25)

Sl_f_._×c6 Sll :, ×c: s__s_s_.- x52- s2_ :: xtt
S12 XcI S12 Xc] $16 Xt2 $16 Xt2

s__6, _76 s_ >xcl s_i,_S!_s26>xcl
S12 Xt2 $12 Xt2 S16 Xt2 $16 -Xc2

These are the terms of the compliance matrix (flexibility

matrix).

For the maximum stress theory, also stability requirements

must be imposed in the form:

el6 c22 _, _cJ_ c22 > /,c2
C12 C66 Xc] C12 Xtl etc. (26)

Since their relations are no longer used, however, they are

not written out in greater detail here. Further information may be

found in the literature [7] page 381.

It is apparent that the number of stability requirements for

a real three-dimensional failure criterion becomes so large that

there is no practical possibility of applying the criterion.

The maximum tension and stress theories must, tberefore, be

described as practically inapplicable.

The Hill criterion and the criteria of Tsai-Azzi and Norris-

Puck derived from it are not applicable, since here the differences
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between tension and stress cannot be discounted. In the flat

stress state, this problem is solved to some extent by formulat-

ing tbe criterion concerned per quadrant in the stress space, while

the corresponding strength numbers are used for each quadrant. In

the bi-dimensiona! case, this operation can still be considered,

but for the three-dimensional case, this leads to very complex for-

mulae, and there is also the problem that the surface is no longer

convex so that both requirements 3 (clear solution for a load path)

and 4 (clear conversion from stress to tension theory) are no longer

satisfied.

For these reasons, we must also abandon the inapplicable cri-

teria of Hill, Tsai-Azzi and Norris-Puck.
/2_

The great drawback of the Marin criterion is that the direction

of the main stress may coincide with the main directions of the

material which for a structure need absolutely not be the case. For

this reason, the Marin criterion does not apply either.

There remain the criteria of Hoffman, Franklin and Tsai-Wu.

The only difference between these criteria is the definition

of the cross-terms Fij (i _ j). For the Hoffman criterion, the

cross-terms satisfy immediately the stability requirements.

For Franklin and Tsai-Wu, extra attention must be paid to the

stability criteria (19).

Moreover, in the last two cases, rather complicated biaxial

experiments are needed to determine the parameter values of the

cross-terms.

Before beginning such complicated experiments, we must natur-

ally examine the gain in precision which may be expected with these

criteria (Franklin, Tsai-Wu). This will be considered in particular
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on the basis of the term F!2. To simplify the plan to some extent,

the parameter picture of the FI2 values is subdivided into two par-

tial regions while the value of FI2 as follows from the Hoffman

criterion is used as separation (designated hereafter as FI2H).

l 0<Fij_ Fl2H

This region was studied thoroughly by Narayanaswami [16].

In this investigation in [16], two failure criteria are studied,

specifically tbe Tsai-Wu criterion with FI2 = 0 and the Hoffman cri-

terion. The author determined for different composite materials

and for different load states the failure strengths with the two

different criteria.

On the basis of the results, it was possible to establish that

the difference between the two criteria was never more than 10% in

the extreme case. Since this 10% level is taken in the literature

as a sort of magic limit with regard to measurement precision in

failure experiments, in the publication in question the conclusion

is also drawn that for practical purposes it makes no difference as

to which criterion is applied.

Fij> FI2,I

Vii< 0

In this connection, no investigations are known in which the

effect of the cross-terms on the precision of failure strengths was

estimated. But it is quite possible to estimate quantitatively the

effect of the cross terms, if we limit ourselves to the composite

material to be used in the mine detectors.

/23

In the first place, one may study the parameter region which

is permissible at maximum for the composite material in question

here. Tbis attempt is made in Appendix A. The latter formulates

the cross-terms Fij as a function of the Hoffman parameters in the

form:
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(27)

By applylng the stability criteria, it may be found that:

[_] < _ 1.5 to 2

I6l < _ i.I

IX] < _ 1.1

From these numerical values, tbe conclusion may be drawn that

the boundary values of the cross-terms FI3 and F23 are approximately

equal to the values of the Hoffman parameters (as long as Fij has

the same sign as the Hoffman parameters). For practical purposes,

the limiting values for the parameters FI3 and F23 can he taken as

equal to the Hoffman parameters (or[y] :]B] = i ). The exact exper-

imental determination of the parameters FI3 and F23 (in accordance

with the Tsai-Wu or Franklin concept) should imply the biaxial exper-

iments must be carried out in plane 1-3 or 2-3. These experiments

are very difficult (see theproblems in the determination of the

interlaminate tension strength in [25]) and, therefore, proportion-

ately inaccurate (probably inaccuracy more than 10%).

In view of the results of the study by Narayanaswami [15], it

can actually be stated also that there is no benefit in determining

experimentally the parameter values of FI3 and F23, and that it is

best to use for these parameters the Hoffman formulation (14).

For the parameter Fi2, there is somewhat more latitude with

regard to the Hoffman criterion (lal < 1.5 to 2) and in this plane

experiments may be conducted with somewhat higher precision.

But In this case also we must expect very spectacular differ-

ences. Indeed, Franklin [8] established that the application of

the Hoffman criterion may give an over-estlma%_on of the strength

in the order of 50% (for the case described by him), but Franklin

corrected thereafter the value of FI2 with a value a :40.53, which

is larger by factors than the possible values for the present

glass fiber material. On the basis of the results of [2] and [16],

27
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the conclusion can be drawn actually that the application of a

Hoffman formulation gives deviations of 20-25% for the cross-term

FI2 in the most unfavorable case.

Thereby, this precision may, if desired, be fairly simply

doubled by carrying out a sllp test on a material sample under 45 °

in the plane 1-2 (see Figure 9). This is then a positive slip test,

of which it was already stated earlier that the test is probably

not exact enough to determine exactly FI2. The test should be

amply sufficient to establish the sign of the FI2 term.

To correct the Hoffman parameter FI2 for this sign (this does

not affect the stability criteria), the precision is brought back

to within 10%.

To summarize, it may be stated that the stability criteria

impose strength limitations on the cross-terms, such that the inclu-

sion of the test precision is amply sufficient to use the Hoffman

criterion.

A possible exception to this is the cross-term Fi2, but for

this term the precision can be brought rapidly within I0% limits

through a slip test on a 45 ° blank. The following tests are needed

to determine the failure criterion:

Hoffman criterion: tension tests)

) in directions I, 2 and 3
compression tests)

slip tests in directions I, 2 and 3

determination of the sign of FI2: slip tests on 45 ° blanks in

the plane 1-2

3. EXPERIMENTS

A number of researchers have applied for purely theoretical

reasons boundary conditions on the type of experiments needed to

determine the failure criteria [1,3,7].

/26

For the sake of completeness
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a number of these boundary conditions are indicated.

imposes two main requirements on the experiments:

In [4], Wu

- the stresses in the blank must be calculated under the

boundary conditions taken in the experiment

- the stresses in the blank must be uniform.

Here Wu stated that in the determinations of the parameters

which are defined by overall material properties, this second

requirement is not so important. But if the parameters are deter-

mined by local properties as is the case for the failure, this

second requirement must immediately be satisfied. This implies

practically that experiments with notched blanks are not permissible.

Another aspect which must be considered in the determination

of the failure criterion is the fact that tbe criteria to be deter-

mined are valid only for radial stress paths (if there are of

course inelastic deformations before the failure, which should very

certainly be the case here). But this implies that the stress in

the structure must remain the same in regard to the form until the

moment of the total failure, since otherwise a too favorable picture

would be obtained with regard to the failure strength. Practically,

this is due to the fact that one has to test one type of failure per

experiment. For example, it is not desirable that when a failure

occurs in a test-bar, the stress distribution should change in such

a manner that another failure type is indicated (where the material

is for example much more resistant). It is then useful also after

conducting the test to check whether a type of failure has indeed

occurred. In this connection, tests in the form of bending tests

are advlsed against most strongly.

The number of possible types of experiments is limited too

strongly by the prevlous boundary conditions. Lenoe [26] and

Whitney [27] have published extensive reviews on the possibility

of accomplisbment and the limitations of the different types of
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experiments. Although most of the authors arrived at the conclu-

sion that the cylindrical blank is the only one which gives reason-

able results, this conclusion ls nevertheless inspired too much by

the desire to be as flexible as possible In the choice of multiaxial

stress states. As is apparent from the above, this is also vital

in the application of tbe Tsai-Wu criterion. But if we limit our-

selves to a Hoffman criterion, this requirement ls much less signi-

ficant.

/26

A last aspect to be discussed here is the thickness effect

mentioned by a number of authors (see for example [3]). This thick-

ness effect is explained by the fact that for a plate material the

outermost fibers experience much less support from the matrix mat-

erial than the central fibers. This effect should occur whenever

the fibers are curved (just as for a fabric). The effect should be

clearly noticeable when the plate thicknesses are lower (less

fibers in the thickness direction) and will lead from thinner plates

to a reduction in the failure strength (see Figure i0). Although

in the mlne detector research will be damped for the plate thick-

nesses, it can be important if thinner plates are removed from the

original plate to undergo tests subsequently.
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_:l.,_s filaments

Phenolic 181 fJbric

(A1100 finish) _

Resin (',mter, t Modulus o£ Maxinnuem ..Modul,.; of _l.:,.: ,)urn

(W_°?,) Ela_tlei%- 5,rc_ Ela_,cuy ."it r,.:i_

(psO (psn) (p_,)

313 1.35 x lO s 2230 1.42 x 10 _ 5'_1,0U0

35.2 1+42 x 10 _ 3590 1.33 x 10_ 21,h()O

31.1 1.91 x I0 _ 3380 1.84 x 10 _- 93.8vU

27.5 1.13 × I0 _ 710_ 2.07 x 10 _ 8t),4'C',t

• Trade name [or me_.acr')'ac_)chromic chk, rlde.

b Trade nz!n_ tot y-dminOprop_ ItricthoxysiLme.
¢ These values may be too low because of mact, ini,l_ of t_'n_ile _pqci"

rural Fur u;m_._kcd spccin'.cns d_c nmdulu_ wJs 2 :< I0 _ p,, and the

str_. gth wJs 27V0 p_i.

Table z Mechanical Properties of Fabr;c Laminates

Llm;_l:¢ [.l_ lct_._hon

";ut f_. • F'.t,e,c

I" ) .",¢ Trt_m,eet >(_I_
I{Plin

S _-iTS I,'II' Epoxy

S I £1'S 14J:' i';pvxy

[-: \'td.-. n _ ' ISI l:t,.xy

O If7"5 181 l'_l)_)x y

1"." Vc!an _) 1SI i)t,l)_ _ter

l't t+++i(l %_ :'t'ni:h $Iten.:'h _+f. ,.luh_ M,.d,u:,l_ :4_ _. /_.!lh _,_* cl;glh _, I...+_,l,,. %1)- t,.i.,_
L'_,.rtn_ (Itl 3 p.I) (I,l 3 _,-I) II+/' I)_') _ +'_ f'_ I

l'_ '+V_'whl IJl( I _ ll,ll'_ Itille I '_ I ))h _th,n I Ilh_ h_+¢_ _%J,4 r _1 l'dl +,_+ .u p I,I;

2,'1.5-3:.6 97.7 95.3 1.15 3.09 67.4 64.0 460 * _ 31)4(I 31211

30 139 5 31.8 S.q2 0.74 708 34.2 51,_5 ,,.. 4+)5o 2250

25 55.£ 52.6 3.16 2.39 .5g.2 52.5 _'_4 ._ .!.94' 333(1 ]I 10

31.9 35.0 33.3 2J,V 2+57 52.7 4'_.2 2.85 2.79 3710 3720

35 48,0 45,.) 2 Si) .-- 3S.(I 36.3 ..... '

O0
"n::0
"I) 0
oE-
_l_r-

= I_:ric Coe_tru¢'wn: S:t._c ISI : 57 .,54 end_. ;rod picks/inch; 0 0055 inchc_ tl_;ck; ,"; h.mu,s satin _t.ave; _arp and fdl y.arn. 225 L

St)It I-_]: 49 ×._ll tl_dr, and pi_:k+llnch; fJ.O09 il_cl,cs du+k: cr,_fl,,,t +.4u+ %_tc _ .'e ; _%"ur p ) ;i ri i , 2 . . _ , fi_l )'lllli 45111.

' Tt;IJ_: P,.Itlle (Of I_Y_th.t,Cl,¢_ _._]lrlurl}iC _ !or de.

r'-t_

"<co

TABLES i and 2: Strength values in tension and compression for different

composite materials [3]
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Figure 3. Comparisons between maximum stress theory
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Figure 5. Lower (I) and upper (u) limits of the sllp strength
•12 (by limit load analysis) as a function of the glass fiber
content and the flow limit k of the matrix material
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Figure 6. Lower (i) and upper (u) limit of the slip strength

T23 (by load limit analysis) as a function of the glass fiber
content Vf and the flow limit k of the material of the matrix
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Figure 7. Maximum tension theory in the stress space
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Figure 8. Maximum stress theory in the tension space
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to determine the FI2 cross-terms with regard to the
slip test
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APPENDIX A Stability for the Franklin criterion

Stability for the Franklin Criterlon

The starting point may be the Hoffman criterion, which may

be written in its simplest form as follows (as regards the quad-

°

C2 + C3 -C3

ratic terms)

C1 + C3

-C2 0 0 0

-El 0 0 0

C] + C2 0 0 0

m 0 0

n 0

P

= F'ij
(a-l)

/AI

Franklin attempted to achieve a better consistency for a

multiaxlal stress state by introducing three additional parameters

_ Y through which the relation (a-l) is converted into:

r_ _T -- l C ] -- I ] C 2 0 0

C] + C3 -,_Cl (] 0

C1 _ C2 0 0

P,l 0

n

o

0

0 = Fij

0

0

P

(a-2)

To have a closed convex failure surface in the stress state,

the Franklin theory must also satisfy the stability criteria as

defined in the Wu theory (tensor polynomials)

rii F]j - Fij2 . l" 0 (a-3)

This stability criterion is used to have an estimate of the

magnitude of the new parameters introduced
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Substituting (a-8) in (a-7), we find

(a-8) s_H_';tit_e-e,1in (,_-7) le'.'ort

(l- ,2) C32

1 -'2 5 t
,t

9 2
- - ,I -' 0 --9 +l

.4

r 25
-2. _! C32 + .... C32 .0

2 ,I

25
0

9 3

,1 2
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(a-9)

When choosing the relation between Xt and Zt, we must start

from the maximum value of Zt as shown in the paper by Tegelaar

(Experimental Determination of the Material Properties of Glass

Fiber Reinforced Polyester; IWECO Report no. 5072020-78-1). To

study the effect of these relations on the value of _, a second

case is considered:

Xt _ 20 Zt

!

so that ci - l angC3 = !I 2 l
ZtZc 2 i207tZc ZtZc

= m C1 (a-9)
2O

or

The substitution of (a-9) in (a-7) gives

g(1"" 2) C32 + 2 -20 C32 ,. _400 C3<_.>0
q 8I

o<wel 1 - <_2 -3f, O 400
I- --- > 0

81 81

I + ,10 2-- -_l >0
81

[ 121
(l < ____

81

11
<" --= 1,22

9

Thus the value of _ is lower in this case.

(a-lO)

In the preceding, very little attention was paid (necessarily)

to the compression strengths.

It may be established directly that Xc<Zc since the pressure

in the X-direction possibly causes the failure mechanism to be

44
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determined by the cracking of the fibers, while for the pressure

in tbe Z direction, the failure of the matrix material will pre-

dominate. The consequence of this difference between Xc and Zc is

that the maximum permissible value of _ is again somewhat higher.

But it may well be doubted whether Xc and Zc show a very great

difference and in this sense, it may be expected that the shifts in

the maximum will not be spectacular for _. It may be said prelimin-

arily that -2 < a < 2 seems to be most applicable for the material

in question here for _.

II Parameter 6

9

FII F33 --FI3" ,0

2 C22 > 0(c2 , <3) (c] + c2) - _
9

Ck" '12C3 _ C!C1 _ C1C2 - j._2 C2 2>0

(1 -:'_) C22 _ (2C2, _ C]C_; ' Cir.? .'0

(a-ll)

If we use once again the relations (a-6) equation (a-ll) is con-

verted into

(a-ll) over in

(1 - '2) C22 + _r2r3 + C?2-. 0

(2 -.;2) C22 + 2C,2C3 • 0 (a-Z2)

The substitution of (a-8) gives

(2 - '2) C22 + 2 -2 C2" 0
5

_-2 ,,o
5

f -I; ? - 6 6
s <!\ s!

The substitution of (a-9) gives

(a-J3)

/A4
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Consequently, it cannot be stated that for the Hoffman cri-

terion _ = B = Y = I.

These values thus satisfy directly the stability criteria.
6

It may also happen that the maximum values of _ and y are _:I.095.

When it is recalled also that most of the experimenters state that

the strengtb values bave a 10% spread (Wu also uses this percentage

in [7] to determine the precision of the tensor polynomial), it may

be stated a priori that the maximum values of B and _ can be esta-

blished as I just as well.
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